标题:
内存及内存常识
[打印本页]
作者:
何足道
时间:
2008-5-7 17:09
标题:
内存及内存常识
内存深度研究!双通道与容量谁更重要
用户在升级内存过程中,最苦恼的想必就是容量与内存条数的选择。目前的DDR内存规格主要以单条256M、单条512M、单条1024M为主,如果要组建双通道则是256M×2、512M×2或是1024M×2。这×2可就决定了投入的翻倍,所带来的性能提升是否真的值得呢?
最早引入“双通道”概念的RAMBUS平台
双通道内存技术已经在目前Intel和AMD平台得到了广泛普及,除去Socket 754 K8处理器之外,已经很难在市场上见到仅支持单通道内存的主流平台。双通道内存技术之所以出现,是为了提高内存传输位宽。双通道内存技术最初是从RAMBUS RDRAM内存开始的。RAMBUS内存虽说运行速度快,但是总线宽度却比SDRAM内存还要小,因此它不得不结合Intel的双通道内存控制技术以提高带宽,以满足P4处理器的需要。不过RAMBUS生产成本过高的原因,逐步被市场淘汰,这就使得双通道技术能在DDR内存上发扬光大。
双通道内存对集成显示芯片性能提升明显
双通道内存技术的核心原理是内存控制器可以在两个不同的数据通道上,对采用两条运行频率相同的内存,同时进行数据的读取写入数据。内存位宽就由单条的64bit达到了128bit,所提供的带宽就是原来的两倍。这样一来,哪怕前端总线是1066MHz的酷睿处理器也能得到充足的内存带宽。不仅如此,那些采用共享系统内存的显示芯片,也可在在内存使用双通道模式的时候,实现128bit内存应用,随之而来的自然是图形处理性能的明显提升。
nForce2平台双通道技术
在双通道内存的实现方法上,不同的芯片组也有着截然不同的技术。早期的nForce2芯片组采用了两个独立的内存控制器,分别控制两个不同的通道。这样每个通道的内存模组的容量就可以不同,这也就是大多数nForce2主板有三个内存插槽的原因。但由于采用了双控制器结构,运行时会产生内存地址转换上的延迟或冲突,这就使得nForce2的双通道性能优势并不明显。
AMD K8处理器内存控制器结构
相比之下,Intel和K8的双通道内存控制器就简单许多。此类内存控制器直接采用了一个128bit控制单元来提升位宽。由于此控制单元给两个通道内存的寻址指令是一模一样的,从而也要求组成双通道的内存模组的容量、位宽以及延迟必须完全一样;如果使用不同状态的内存条,单个内存控制器是无法发出两套不同指令给予支持。
通过多项数据的统计,我们发现单纯的提升内存位宽只能在理论测试中占有绝对的优势。在日常应用还是需要增加内存容量来配合,才能发挥优势。
对于小内存用户来说,最先考虑的就是增加容量。笔者建议512MB是最低配置;如果经常进行3D游戏和多任务应用等高负荷运算,1GB以上的内存则是比较理想的。在增加容量时,模式的选择还是要根据相应的用途顶多。如果您是如果您的爱机是以游戏娱乐为主,大可选择单通道的K8闪龙平台配中高档显卡,已达到最佳性价比;如果您平时要进行大量的多任务处理,双通道大容量内存还是值得升级的。
另外需要说明的是,不同品牌、不同规格的内存之间可能会存在一些兼容性的问题。同时,某些主板与某些内存之间也可能有不兼容的现象,因此升级后如果出现系统不稳定的情况,首先应该检查是否存在着兼容性问题。笔者强烈建议升级内存的用户尽量要购买与以前相同品牌同型号的内存;如果还是因为批次差异而存在问题,不妨考虑舍弃原有内存,重新购买一对新产品。总之,选择内存方面,容量永远是第一位的;只有在内存够用的情况下提升位宽,才能带来明显的性能提升。内存频率
内存主频和CPU主频一样,习惯上被用来表示内存的速度,它代表着该内存所能达到的最高工作频率。内存主频是以MHz(兆赫)为单位来计量的。内存主频越高在一定程度上代表着内存所能达到的速度越快。内存主频决定着该内存最高能在什么样的频率正常工作。目前较为主流的内存频率室333MHz和400MHz的DDR内存,以及533MHz和667MHz的DDR2内存。
大家知道,计算机系统的时钟速度是以频率来衡量的。晶体振荡器控制着时钟速度,在石英晶片上加上电压,其就以正弦波的形式震动起来,这一震动可以通过晶片的形变和大小记录下来。晶体的震动以正弦调和变化的电流的形式表现出来,这一变化的电流就是时钟信号。而内存本身并不具备晶体振荡器,因此内存工作时的时钟信号是由主板芯片组的北桥或直接由主板的时钟发生器提供的,也就是说内存无法决定自身的工作频率,其实际工作频率是由主板来决定的。
DDR内存和DDR2内存的频率可以用工作频率和等效频率两种方式表示,工作频率是内存颗粒实际的工作频率,但是由于DDR内存可以在脉冲的上升和下降沿都传输数据,因此传输数据的等效频率是工作频率的两倍;而DDR2内存每个时钟能够以四倍于工作频率的速度读/写数据,因此传输数据的等效频率是工作频率的四倍。例如DDR 200/266/333/400的工作频率分别是100/133/166/200MHz,而等效频率分别是200/266/333/400MHz;DDR2 400/533/667/800的工作频率分别是100/133/166/200MHz,而等效频率分别是400/533/667/800MHz。
内存异步工作模式包含多种意义,在广义上凡是内存工作频率与CPU的外频不一致时都可以称为内存异步工作模式。首先,最早的内存异步工作模式出现在早期的主板芯片组中,可以使内存工作在比CPU外频高33MHz或者低33MHz的模式下(注意只是简单相差33MHz),从而可以提高系统内存性能或者使老内存继续发挥余热。其次,在正常的工作模式(CPU不超频)下,目前不少主板芯片组也支持内存异步工作模式,例如Intel 910GL芯片组,仅仅只支持533MHz FSB即133MHz的CPU外频,但却可以搭配工作频率为133MHz的DDR 266、工作频率为166MHz的DDR 333和工作频率为200MHz的DDR 400正常工作(注意此时其CPU外频133MHz与DDR 400的工作频率200MHz已经相差66MHz了),只不过搭配不同的内存其性能有差异罢了。再次,在CPU超频的情况下,为了不使内存拖CPU超频能力的后腿,此时可以调低内存的工作频率以便于超频,例如AMD的Socket 939接口的Opteron 144非常容易超频,不少产品的外频都可以轻松超上300MHz,而此如果在内存同步的工作模式下,此时内存的等效频率将高达DDR 600,这显然是不可能的,为了顺利超上300MHz外频,我们可以在超频前在主板BIOS中把内存设置为DDR 333或DDR 266,在超上300MHz外频之后,前者也不过才DDR 500(某些极品内存可以达到),而后者更是只有DDR 400(完全是正常的标准频率),由此可见,正确设置内存异步模式有助于超频成功。
目前的主板芯片组几乎都支持内存异步,英特尔公司从810系列到目前较新的875系列都支持,而威盛公司则从693芯片组以后全部都提供了此功能。
内存混插常见问题和解决方法
经常关注三大件市场变化的朋友都会发现,目前大容量的内存越来越便宜了,这让很多用户都有了升级内存的想法。纵观目前的内存市场,新掘起的品牌还真不少,在内存的频率上,如今DDR266、DDR33的内存已经慢慢淡出市场,主流DDR400价格方面与前者已经没有太大的差距。 很多老用户机器上搭配上都是DDR 266的内存,但由于已经无法购买到此频率的内存条,因此大部分朋友购买了DDR 400的内存,但由于这两种内存的频率不匹配,往往会遇到一些麻烦。另外很多用户在购买内存条后发现与机器上装的内存条型号不一致,这样也会造成各种问题,接下来对使用不同型号、规格的内存易发生的各种故障总结如下。
一、电脑无法正常开机
这是使用不同规格的内存条一个普遍存在的问题,出现这种情况一般有三解决的途径:
1、更换内存条。这是最为直接的方法。如果你是购买的一条更大容量高频率的内存条,你可以先将原来较小容量的内存取下,将新购买的内存条插入机器中,如果能够开机,则进入至主板的BIOS中将内存的频率降至主板的支持的内存频率值进行降频使用,这样一般不会造成浪费,而且稳定性较好,一般情况下也不会出现问题。(注意芯片组对内存频率的支持不同,便如较早的815系列芯片只能够支持DDR266的内存,因此如果购买的DDR400的内存就得降超使用。)
另外一种方法是可以将老内存条插到主板内存插槽较靠前的位置,即两根插槽可插在内存插槽一的位置,这样偶尔可以使用电脑开机。
2、使用单独一条使电脑能够开机,这时进入BIOS设置,将与内存有关的设置项依照低速内存的规格设置。比如:使用其中的一根内存(如果是DDR266和DDR400的内存混合使用,最好使用DDR266的内存),将计算机启动,进入BIOS设置,将内存的工作频率及反应时间调慢,以老内存可以稳定运行为准,关机后插入第二根内存即可使两条内存保持相同的工作频率。
二、电脑工作不稳定,经常死机
计算机运行不稳定这类问题的出现主要是内存兼容性造成的,解决的基本思路是与上面大体相同。第一是更换内存的位置;第二,在BIOS中关闭内存由SPD自动配置的选项,改为手动配置。第三,如果主板带有I/O电压调节功能,可将电压适当调高,加强内存的稳定性。
内存进入双通道时代后,不同型号的内存插在一起组建双通道更容量造成系统不稳定的现象,这是由于不同厂家的产品在设计时不尽采用的技术不同,而双通道对内存的要求相当的高,因此如果是在组建双通道时出现经常死机等不稳定现象时,可以不组建双通道功能来测试,如果没有问题则可以采用这种方式。
三、混插或升级内存条后内存容量识别不正确
造成这种现象的原因一般有以下几种:
第一种可能是主板芯片组自身的原因所造成的,一些老主板只支持256MB内存的容量(如英特尔i815系列最高只支持512MB的内存容量),超出的部分均不能识别和使用。当然还有一些情况是由于主板无法支持高位内存颗粒造成的,解决这类问题的惟一方法就是更换主板或者内存。另外在一些情况下通过调整内存的插入顺序也可以解决此问题,大家在遇到这类问题时可以亲自动手多试一下。
内存混插不稳定的问题是一个老问题了。从当年的EDO到SDRAM再到DDR,这类的问题一直存在。因此虽然现在高频率的大容量内存虽然价格与低频率相差不大,但大家在购买时首先还是要从主板及旧内存的角度出发,注意看清主板支持内存的容量规格,并注意内存的品牌及型号,尽量做到与老内存一致。
市场上的内存种类繁多,其兼容性能也不尽相同,大品牌的产品兼容性就做的相当出色,因此尽量购买一些大品牌的内存,比如金士顿、金邦等,它们的电气兼容性一般比较好,出现问题的几率要低一些。
如果比较注重价格,可以购买一般内存,但要尽量选择宽PCB板的内存,这种内存的排阻并非像窄条那样是在PCB板内的,所以从稳定性和兼容性上来说要好一些,两者价格差别非常小。
DDR2的定义:
DDR2(Double Data Rate 2) SDRAM是由JEDEC(电子设备工程联合委员会)进行开发的新生代内存技术标准,它与上一代DDR内存技术标准最大的不同就是,虽然同是采用了在时钟的上升/下降延同时进行数据传输的基本方式,但DDR2内存却拥有两倍于上一代DDR内存预读取能力(即:4bit数据读预取)。换句话说,DDR2内存每个时钟能够以4倍外部总线的速度读/写数据,并且能够以内部控制总线4倍的速度运行。 此外,由于DDR2标准规定所有DDR2内存均采用FBGA封装形式,而不同于目前广泛应用的TSOP/TSOP-II封装形式,FBGA封装可以提供了更为良好的电气性能与散热性,为DDR2内存的稳定工作与未来频率的发展提供了坚实的基础。回想起DDR的发展历程,从第一代应用到个人电脑的DDR200经过DDR266、DDR333到今天的双通道DDR400技术,第一代DDR的发展也走到了技术的极限,已经很难通过常规办法提高内存的工作速度;随着Intel最新处理器技术的发展,前端总线对内存带宽的要求是越来越高,拥有更高更稳定运行频率的DDR2内存将是大势所趋。
双通道内存技术
双通道内存技术其实是一种内存控制和管理技术,它依赖于芯片组的内存控制器发生作用,在理论上能够使两条同等规格内存所提供的带宽增长一倍。它并不是什么新技术,早就被应用于服务器和工作站系统中了,只是为了解决台式机日益窘迫的内存带宽瓶颈问题它才走到了台式机主板技术的前台。在几年前,英特尔公司曾经推出了支持双通道内存传输技术的i820芯片组,它与RDRAM内存构成了一对黄金搭档,所发挥出来的卓绝性能使其一时成为市场的最大亮点,但生产成本过高的缺陷却造成了叫好不叫座的情况,最后被市场所淘汰。由于英特尔已经放弃了对RDRAM的支持,所以目前主流芯片组的双通道内存技术均是指双通道DDR内存技术,主流双通道内存平台英特尔方面是英特尔 865/875系列,而AMD方面则是NVIDIA Nforce2系列。 双通道内存技术是解决CPU总线带宽与内存带宽的矛盾的低价、高性能的方案。现在CPU的FSB(前端总线频率)越来越高,英特尔 Pentium 4比AMD Athlon XP对内存带宽具有高得多的需求。英特尔 Pentium 4处理器与北桥芯片的数据传输采用QDR(Quad Data Rate,四次数据传输)技术,其FSB是外频的4倍。英特尔 Pentium 4的FSB分别是400/533/800MHz,总线带宽分别是3.2GB/sec,4.2GB/sec和6.4GB/sec,而DDR 266/DDR 333/DDR 400所能提供的内存带宽分别是2.1GB/sec,2.7GB/sec和3.2GB/sec。在单通道内存模式下,DDR内存无法提供CPU所需要的数据带宽从而成为系统的性能瓶颈。而在双通道内存模式下,双通道DDR 266/DDR 333/DDR 400所能提供的内存带宽分别是4.2GB/sec,5.4GB/sec和6.4GB/sec,在这里可以看到,双通道DDR 400内存刚好可以满足800MHz FSB Pentium 4处理器的带宽需求。而对AMD Athlon XP平台而言,其处理器与北桥芯片的数据传输技术采用DDR(Double Data Rate,双倍数据传输)技术,FSB是外频的2倍,其对内存带宽的需求远远低于英特尔 Pentium 4平台,其FSB分别为266/333/400MHz,总线带宽分别是2.1GB/sec,2.7GB/sec和3.2GB/sec,使用单通道的DDR 266/DDR 333/DDR 400就能满足其带宽需求,所以在AMD K7平台上使用双通道DDR内存技术,可说是收效不多,性能提高并不如英特尔平台那样明显,对性能影响最明显的还是采用集成显示芯片的整合型主板。
NVIDIA推出的nForce芯片组是第一个把DDR内存接口扩展为128-bit的芯片组,随后英特尔在它的E7500服务器主板芯片组上也使用了这种双通道DDR内存技术,SiS和VIA也纷纷响应,积极研发这项可使DDR内存带宽成倍增长的技术。但是,由于种种原因,要实现这种双通道DDR(128 bit的并行内存接口)传输对于众多芯片组厂商来说绝非易事。DDR SDRAM内存和RDRAM内存完全不同,后者有着高延时的特性并且为串行传输方式,这些特性决定了设计一款支持双通道RDRAM内存芯片组的难度和成本都不算太高。但DDR SDRAM内存却有着自身局限性,它本身是低延时特性的,采用的是并行传输模式,还有最重要的一点:当DDR SDRAM工作频率高于400MHz时,其信号波形往往会出现失真问题,这些都为设计一款支持双通道DDR内存系统的芯片组带来不小的难度,芯片组的制造成本也会相应地提高,这些因素都制约着这项内存控制技术的发展。
普通的单通道内存系统具有一个64位的内存控制器,而双通道内存系统则有2个64位的内存控制器,在双通道模式下具有128bit的内存位宽,从而在理论上把内存带宽提高一倍。虽然双64位内存体系所提供的带宽等同于一个128位内存体系所提供的带宽,但是二者所达到效果却是不同的。双通道体系包含了两个独立的、具备互补性的智能内存控制器,理论上来说,两个内存控制器都能够在彼此间零延迟的情况下同时运作。比如说两个内存控制器,一个为A、另一个为B。当控制器B准备进行下一次存取内存的时候,控制器A就在读/写主内存,反之亦然。两个内存控制器的这种互补“天性”可以让等待时间缩减50%。双通道DDR的两个内存控制器在功能上是完全一样的,并且两个控制器的时序参数都是可以单独编程设定的。这样的灵活性可以让用户使用二条不同构造、容量、速度的DIMM内存条,此时双通道DDR简单地调整到最低的内存标准来实现128bit带宽,允许不同密度/等待时间特性的DIMM内存条可以可靠地共同运作。
支持双通道DDR内存技术的台式机芯片组,英特尔平台方面有英特尔的865P/865G/865GV/865PE/875P以及之后的915/925系列;VIA的PT880,ATI的Radeon 9100 IGP系列,SIS的SIIS 655,SIS 655FX和SIS 655TX;AMD平台方面则有VIA的KT880,NVIDIA的nForce2 Ultra 400,nForce2 IGP,nForce2 SPP及其以后的芯片。
DDR3内存技术与DDR2的区别
DDR2内存的好日子还没过上几天,它的下一代产品DDR3又成为了人们关注的对象。在本届2006台北Computex会展上,威刚科技向人们展示了新一代的DDR3内存。威刚此次展示的vitesta DDR3无缓冲DIMM内存包括DDR3-1066和DDR3-1333两种规格,单条容量均为1GB,针脚数240,核心电压1.5+/-0.1V,延迟设定为CL7,虽然DDR3与DDR2一样存在高延迟的缺点,不过DDR3比DDR2拥有更高频率的优势。威刚科技表示,此次仅展示了DDR3-1066/1333规格,但DDR3 1666也会很快到来。
在威刚最新推出的DDR3内存中,加入了数据同步设计(Data Synchronization),使电压降低为1.5V,这对以省电为诉求的笔记本计算机而言,电池续航力增加,电池寿命及热量可得到更好的改善。威刚DDR3系列初期将提供512M、1G容量规格,采用BGA封装,未来根据市场需求,相对地会推出2GB和4GB的更高容量。
目前DDR2尚未完全取代DDR内存,在目前的整机环境下,DDR2基本能够满足各类型电脑的应用需求,那么最新一代的DDR3相比DDR2具有哪些优势,使得包括Intel和AMD以及A-DATA在内的众多国际顶级厂商都致力于DDR3的开发与应用呢?由于DDR2的数据传输频率发展到800MHz时,其内核工作频率已经达到了200MHz,因此,再向上提升较为困难,这就需要采用新的技术来保证速度的可持续发展性。另外,也是由于速度提高的缘故,内存的地址/命令与控制总线需要有全新的拓朴结构,而且业界也要求内存要具有更低的能耗,所以,DDR3要满足的需求就是:
1.更高的外部数据传输率
2.更先进的地址/命令与控制总线的拓朴架构
3.在保证性能的同时将能耗进一步降低
为了满足上述要求,DDR3在DDR2的基础上采用了以下新型设计:
1.8bit预取设计,而DDR2为4bit预取,这样DRAM内核的频率只有接口频率的1/8,DDR3-800的核心工作频率只有100MHz。
2.采用点对点的拓朴架构,以减轻地址/命令与控制总线的负担。
3.采用100nm以下的生产工艺,将工作电压从1.8V降至1.5V,增加异步重置(Reset)与ZQ校准功能。
DDR3与DDR2几个主要的不同之处:
突发长度(Burst Length,BL)
由于DDR3的预取为8bit,所以突发传输周期(Burst Length,BL)也固定为8,而对于DDR2和早期的DDR架构系统,BL=4也是常用的,DDR3为此增加了一个4bit Burst Chop(突发突变)模式,即由一个BL=4的读取操作加上一个BL=4的写入操作来合成一个BL=8的数据突发传输,届时可通过A12地址线来控制这一突发模式。而且需要指出的是,任何突发中断操作都将在DDR3内存中予以禁止,且不予支持,取而代之的是更灵活的突发传输控制(如4bit顺序突发)。
寻址时序(Timing)
就像DDR2从DDR转变而来后延迟周期数增加一样,DDR3的CL周期也将比DDR2有所提高。DDR2的CL范围一般在2~5之间,而DDR3则在5~11之间,且附加延迟(AL)的设计也有所变化。DDR2时AL的范围是0~4,而DDR3时AL有三种选项,分别是0、CL-1和CL-2。另外,DDR3还新增加了一个时序参数——写入延迟(CWD),这一参数将根据具体的工作频率而定。
DDR3新增的重置(Reset)功能
重置是DDR3新增的一项重要功能,并为此专门准备了一个引脚。DRAM业界很早以前就要求增加这一功能,如今终于在DDR3上实现了。这一引脚将使DDR3的初始化处理变得简单。当Reset命令有效时,DDR3内存将停止所有操作,并切换至最少量活动状态,以节约电力。
在Reset期间,DDR3内存将关闭内在的大部分功能,所有数据接收与发送器都将关闭,所有内部的程序装置将复位,DLL(延迟锁相环路)与时钟电路将停止工作,而且不理睬数据总线上的任何动静。这样一来,将使DDR3达到最节省电力的目的。
DDR3新增ZQ校准功能
ZQ也是一个新增的脚,在这个引脚上接有一个240欧姆的低公差参考电阻。这个引脚通过一个命令集,通过片上校准引擎(On-Die Calibration Engine,ODCE)来自动校验数据输出驱动器导通电阻与ODT的终结电阻值。当系统发出这一指令后,将用相应的时钟周期(在加电与初始化之后用512个时钟周期,在退出自刷新操作后用256个时钟周期、在其他情况下用64个时钟周期)对导通电阻和ODT电阻进行重新校准。
参考电压分成两个
在DDR3系统中,对于内存系统工作非常重要的参考电压信号VREF将分为两个信号,即为命令与地址信号服务的VREFCA和为数据总线服务的VREFDQ,这将有效地提高系统数据总线的信噪等级。
点对点连接(Point-to-Point,P2P)
这是为了提高系统性能而进行的重要改动,也是DDR3与DDR2的一个关键区别。在DDR3系统中,一个内存控制器只与一个内存通道打交道,而且这个内存通道只能有一个插槽,因此,内存控制器与DDR3内存模组之间是点对点(P2P)的关系(单物理Bank的模组),或者是点对双点(Point-to-two-Point,P22P)的关系(双物理Bank的模组),从而大大地减轻了地址/命令/控制与数据总线的负载。而在内存模组方面,与DDR2的类别相类似,也有标准DIMM(台式PC)、SO-DIMM/Micro-DIMM(笔记本电脑)、FB-DIMM2(服务器)之分,其中第二代FB-DIMM将采用规格更高的AMB2(高级内存缓冲器)。
面向64位构架的DDR3显然在频率和速度上拥有更多的优势,此外,由于DDR3所采用的根据温度自动自刷新、局部自刷新等其它一些功能,在功耗方面DDR3也要出色得多,因此,它可能首先受到移动设备的欢迎,就像最先迎接DDR2内存的不是台式机而是服务器一样。在CPU外频提升最迅速的PC台式机领域,DDR3未来也是一片光明。目前Intel预计在明年第二季所推出的新芯片-熊湖(Bear Lake),其将支持DDR3规格,而AMD也预计同时在K9平台上支持DDR2及DDR3两种规格。
作者:
105542
时间:
2008-5-7 19:24
很多,读不完.
欢迎光临 110互动论坛 (http://bbs.110.com/)
Powered by Discuz! 6.1.0